
CHAPTER 4

Symmetric Diagonally-Dominant Matrices and

Graphs

Support theory provides effective algorithms for constructing preconditioners
for diagonally-dominant matrices and effective ways to analyze these precondition-
ers. This chapter explores the structure of diagonally-dominant matrices and the
relation between graphs and diagonallly-dominant matrices. The next chapter will
show how we can use the structure of diagonally-dominant matrices to analyze
preconditioners, and the chapter that follows presents algorithms for constructing
algorithms.

1. Incidence Factorizations of Diagonally-Dominant Matrices

Definition 1.1. A square matrix A ∈ R
n×n is called diagonally-dominant if

for every i = 1, 2, . . . n we have

Aii ≥
n∑

j=1
j �=i

|Aij | .

Symmetric diagonally dominant matrices have symmetric factorizations A =
UUT such that each column of U has at most two nonzeros, and all nonzeros in
each column have the same absolute values. We now establish a notation for such
columns.

Definition 1.2. Let 1 ≤ i, j ≤ n, i �= j. A length-n positive edge vector,
denoted 〈i,−j〉, is the vector

〈i,−j〉 =
i

j

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
+1
...
−1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, 〈i,−j〉k =

⎧⎨
⎩

+1 k = i
−1 k = j

0 otherwise.

A negative edge vector 〈i, j〉 is the vector

〈i, j〉 =
i

j

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
+1
...

+1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, 〈i, j〉k =

⎧⎨
⎩

+1 k = i
+1 k = j

0 otherwise.
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The reason for the assignment of signs to edge vectors will become apparent later.
A vertex vector 〈i〉 is the unit vector

〈i〉k =
{

+1 k = i
0 otherwise.

We now show that a symmetric diagonally dominant matrix can always be
expressed as a sum of outer products of edge and vertex vectors, and therefore, as
a symmetric product of a matrix whose columns are edge and vertex vectors.

Lemma 1.3. Let A ∈ R
n×n be a diagonally dominant symmetric matrix. We

can decompose A as follows

A =
∑
i<j

Aij>0

|Aij | 〈i, j〉 〈i, j〉T

+
∑
i<j

Aij<0

|Aij | 〈i,−j〉 〈i,−j〉T

+
n∑

i=1

⎛
⎜⎜⎝Aii −

n∑
j=1
j �=i

|Aij |

⎞
⎟⎟⎠ 〈i〉 〈i〉T

=
∑
i<j

Aij>0

(√
|Aij | 〈i, j〉

)(√
|Aij | 〈i, j〉

)T

+
∑
i<j

Aij<0

(√
|Aij | 〈i,−j〉

)(√
|Aij | 〈i,−j〉

)T

+
n∑

i=1

⎛
⎜⎜⎝
√√√√√Aii −

n∑
j=1
j �=i

|Aij | 〈i〉

⎞
⎟⎟⎠
⎛
⎜⎜⎝
√√√√√Aii −

n∑
j=1
j �=i

|Aij | 〈i〉

⎞
⎟⎟⎠

T

.

Proof. The terms in the summations in lines 1 and 4 are clearly equal (we
only distributed the scalars), and so are the terms in lines 2 and 5 and in lines 3
and 6. Therefore, the second equality holds.

We now show that the first equality holds. Consider the rank-1 matrix

〈i,−j〉 〈i,−j〉T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

. . .
+1 −1

. . .
−1 +1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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and similarly,

〈i, j〉 〈i, j〉T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

. . .
+1 +1

. . .
+1 +1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(in both matrices the four nonzeros are in rows and columns i and j). Suppose
Aij > 0 for some i �= j. The only contribution to element i, j from the three sums
is from a single term in the first sum, either the term |Aij | 〈i, j〉 〈i, j〉T or the term
|Aji| 〈j, i〉 〈j, i〉T , depending on whether i > j. The i, j element of this rank-1 matrix
is |Aij | = Aij . If Aij < 0, a similar argument shows that only |Aij | 〈i,−j〉 〈i,−j〉T
(assuming i < j) contributes to the i, j element, and that the value of the element
− |Aij | = Aij . The third summation ensures that the values of diagonal elements
is also correct. �

The matrix decompositions of this form play a prominent role in support theory,
so we give them a name:

Definition 1.4. A matrix whose columns are scaled edge and vertex vectors
(that is, vectors of the forms c 〈i,−j〉, c 〈i, j〉, and c 〈i〉) is called an incidence matrix.
A factorization A = UUT where U is an incidence matrix is called an incidence
factorization. An incidence factorization with no zero columns, with at most one
vertex vector for each index i, with at most one edge vector for each index pair
i, j, and whose positive edge vectors are all of the form c 〈min(i, j),−max(i, j)〉 is
called a canonical incidence factorization.

Lemma 1.5. Let A ∈ R
n×n be a diagonally dominant symmetric matrix. Then

A has an incidence factorization A = UUT , and a unique canonical incidence
factorization.

Proof. The existence of the factorization follows directly from Lemma 1.3.
We now show that the canonical incidence factorization is uniquely determined by
A. Suppose that Aij = 0. Then U cannot have a column which is a nonzero
multiple of 〈i, j〉, 〈i,−j〉, or 〈−i, j〉, since if it did, there would be only one such
column, which would imply

(
UUT

)
ij
�= 0 = Aij . Now suppost that Aij > 0. Then

U must have a column
√

Aij 〈i, j〉. Similarly, if Aij < 0, then U must have a
column

√−Aij 〈min(i, j),−max(i, j)〉. The uniqueness of the edge vectors implies
that the scaled vertex vectors in U are also unique. �

2. Graphs and Their Laplacians Matrices

We now define the connection between undirected graphs and diagonally-dominant
symmetric matrices.

Definition 2.1. Let G = ({1, 2, . . . n}, E) be an undirected graph on the vertex
set {1, 2, . . . , n} with no self loops or parallel edges. That is, the edge-set E consists
of unordered pairs of unequal integers (i, j) such that 1 ≤ i, j ≤ n and i �= j. The
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degree of a vertex i is the numbers of edges incident on it. The Laplacian of G is
the matrix A ∈ R

n×n such that

Aij =

⎧⎨
⎩

degree(i) i = j
−1 (i, j) ∈ E (the index pair is unordered)

0 otherwise.

Lemma 2.2. The Laplacian of an undirected graph is symmetric and diagonally
dominant.

Proof. The Laplacian is symmetric because the graph is undirected. The
Laplacian is diagonally dominant because the number of off-diagonal nonzero entries
in row i is exactly degree(i) and the value of each such nonzero is −1. �

We now generalize the definition of Laplacians to undirected graphs with pos-
itive edge weights.

Definition 2.3. Let G = ({1, 2, . . . n}, E, c) be a weighted undirected graph
on the vertex set {1, 2, . . . , n} with no self loops, and with a weight function c :
E → R \ {0}. The weighted Laplacian of G is the matrix A ∈ R

n×n such that

Aij =

⎧⎨
⎩

∑
(i,k)∈E |c(i, k)| i = j

−c(i, j) (i, j) ∈ E
0 otherwise.

If some of the edge weights are negative, we call G a signed graph, otherwise, we
simply call it a weighted graph.

Lemma 2.4. The Laplacian of a weighted undirected graph (signed or unsigned)
is symmetric and diagonally dominant.

Proof. Again symmetry follows from the fact that the graph is undirected.
Diagonal dominance follows from the following equation, which holds for any i,
1 ≤ i ≤ n:

n∑
j=1
j �=i

|Aij | =
n∑

j=1
j �=i

Aij �=0

|Aij | =
n∑

(i,j)∈E

|Aij | =
n∑

(i,j)∈E

|c(i, j)| = Aii .

�

If we allow graphs to have nonnegative vertex weights as well as edge weights,
then this class of graphs becomes completely isomorphic to symmetric diagonally-
dominant matrices.

Definition 2.5. Let G = ({1, 2, . . . n}, E, c, d) be a weighted undirected graph
on the vertex set {1, 2, . . . , n} with no self loops, and with weight functions c : E →
R\ {0} and d : {1, . . . , n} → R+ ∪{0}. The Laplacian of G is the matrix A ∈ R

n×n

such that

Aij =

⎧⎨
⎩

d(i) +
∑

(i,k)∈E |c(i, k)| i = j

−c(i, j) (i, j) ∈ E
0 otherwise.

A vertex i such that d(i) > 0 is called a strictly dominant vertex.
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Lemma 2.6. The Laplacians of the graphs defined in Definition 2.5 are sym-
metric and diagonally dominant. Furthermore, these graphs are isomorphic to sym-
metric diagonally-dominant matrices under this Laplacian mapping.

Proof. Symmetry again follows from the fact that the graph is undirected.
For any i we have

n∑
j=1
j �=i

|Aij | =
n∑

j=1
j �=i

Aij �=0

|Aij | =
n∑

(i,j)∈E

|Aij | =
n∑

(i,j)∈E

|c(i, j)| = Aii − d(i) ,

so

Aii = d(i) +
n∑

j=1
j �=i

|Aij | ≥
n∑

j=1
j �=i

|Aij |

because d(i) ≥ 0. This shows that Laplacians are diagonally dominant. The iso-
morphism follows from the fact that the following expressions uniquely determine
the graph ({1, . . . . , n}, E, c, d) associated with a diagonally-dominant symmetric
matrix:

(i, j) ∈ E iff i �= j and Aij �= 0
c(i, j) = −Aij

d(i) = Aii −
n∑

j=1
j �=i

|Aij | .

�

We prefer to work with vertex weights rather than allowing self loops because
edge and vertex vectors are algebraically different. As we shall see below, linear
combinations of edge vectors can produce new edge vectors, but never vertex vec-
tors. Therefore, it is convenient to distinguish edge weights that correspond to
scaling of edge vectors from vertex weights that correspond to scaling of vertex
vectors.

In algorithms, given an explicit representation of a diagonally-dominant ma-
trix A, we can easily compute an explicit representation of an incidence factor U
(including the canonical incidence factor if desired). Sparse matrices are often rep-
resented by a data structure that stores a compressed array of nonzero entries for
each row or each column of the matrix. Each entry in a row (column) array stores
the column index (row index) of the nonzero, and the value of the nonzero. From
such a representation of A we can easily construct a sparse representation of U by
columns. We traverse each row of A, creating a column of U for each nonzero in
the upper (or lower) part of A. During the traversal, we can also compute all the
d(i)’s. The conversion works even if only the upper or lower part of A is represented
explicitly.

We can use the explicit representation of A as an implicit representation of U ,
with each off-diagonal nonzero of A representing an edge-vector column of U . If A
has no strictly-dominant rows, that is all. If A has strictly dominant rows, we need
to compute their weights using a linear traversal of A.
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3. Laplacians and Resistive Networks

Weighted (but unsigned) Laplacians model voltage-current relationships in elec-
trical circuits made up of resistors. This fact has been used in developing some
support preconditioners. This section explains how Laplacians model resistive net-
works.

Let GA = ({1, . . . , n}, E, c) be an edge-weighted graph and let A be its Lapla-
cian. We view GA as an electrical circuit with n nodes (connection points) and
with m = |E| resistors. If (i, j) ∈ E, then there is a resistor with capacitance c(i, j)
between nodes i and j (equivalently, with resistence 1/c(i, j)).

Given a vector x of node potentials, the voltage drop across resistor (i, j) is
|xi−xj|. If the voltage drop is nonzero, current will flow across the resistor. Current
flow has a direction, so we need to orient resistors in order to assign a direction to
current flows. We arbitrarily orient resistors from the lower-numbered node to the
higher-numbered one. In that direction, the directional voltage drop across (i, j) is

xmin(i,j) − xmax(i,j) = 〈min(i, j),−max(i, j)〉T x .

We denote E = {(i1, j1), (i2, j2), . . . , (im, jm)} and we denote

Ũ =
[ 〈min(i1, j1),−max(i1, j1)〉 · · · 〈min(im, jm),−max(im, jm)〉 ]

.

Using this notation, the vector ŨT x is the vector of all directional voltage drops.
The directional current flow across resistor (i, j) is c(i, j)(xmin(i,j) − xmax(i,j)). We
denote by C the diagonal matrix with Ck,k = c(ik, jk). Then the vector CŨT x is
the vector of directional current flow across the m resistors.

Next, we compute nodal currents, the net current flowing in or out of each node.
If we set the potential of node i to xi, this means that we have connected node
i to a voltage source, such as a battery. The voltage source keeps the potential
at i at exactly xi volts. To do so, it might need to send current into xi or to
absorb currect flowing out of xi. These current flows also have a direction: we can
either compute the current flowing into i, or the current flowing out of i. We will
arbitrarily compute the current flowing into i. How much current flows into node
i? Exactly the net current flowing into it from its neighbors in the circuit, minus
the current flowing from it to its neighbors. Let (ik, jk) ∈ E. If ik < jk, then(
CŨT x

)
k

represents the current c(ik, jk)(xmin(ik,jk) − xmax(ik,jk)) flowing from ik

to jk, which is positive if xik
> xjk

. If ik > jk then current flowing from ik to jk

will have a negative sign (even though it too is flowing out of ikif xik
> xjk

) and
we have to negate it before we add it to the total current flowing from ik to its
neighbors, which is exactly the net current flowing into ik from the voltage source.
That is, the total current from a node i to its neighbors is

∑
(ik,jk)∈E

ik=i

(−1)i>jk

(
CŨT x

)
k

= Ũi, : CŨT x .

Therefore, the vector of net node currents is exactly ŨCŨT = A. We can also
compute the total power dissipated by the circuit. We multiply the current flow-
ing across each resistor by the voltage drop and sum over resistors, to obtain(
xT Ũ

)(
CŨT x

)
= xT ŨCŨT x.
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We summarize the various voltage-current relationships:

x nodal voltages
ŨT x voltage drops across resistors
CŨT x current flows across resistors
ŨCŨT x = Ax net nodal currents
xT ŨCŨT x = xT Ax total power dissipated by the circuit

These relationships provide physical interpretations to many quantities and equa-
tions that we have already seen. Given a vector x of nodal voltages, Ax is the
corresponding vector of nodal currents, where A is the Laplacian of the circuit.
Conversely, given a vector b of nodal currents, solving Ax = b determines the cor-
responding nodal voltages. The maximal eigenvalue of A measures the maximum
power that the circuit can dissipate under a unit vector of voltages, and the min-
imal nonzero eigenvalue measures the minimum power that is dissipated under a
unit voltage vector that is orthogonal to the constant vector (which spans the null
space of A).

Laplacians with strictly-dominant rows arise when the boundary conditions,
the known quantities in the circuit, include a mixture of nodal voltages and nodal
currents. Suppose that we know the currents in all the nodes except for one, say
n, where we know the voltage, not the current. Let us assume that the voltage at
node n is 5 Volts. We want to compute the voltages at nodes 1 to n−1. We cannot
use the linear system ŨCŨT x = Ax = b directly, because we do not know bn, and
on the other hand, we do know that xn = 5. Therefore, we drop the last row from
this linear system, since we do not know its right-hand side. We have

⎡
⎢⎣

A1,1 · · · A1,n−1 A1,n

...
...

...
An−1,1 · · · An−1,n−1 An−1,n

⎤
⎥⎦
⎡
⎢⎢⎢⎣

x1

...
xn−1

5

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

b1

...
bn−1

⎤
⎥⎦

or ⎡
⎢⎣

A1,1 · · · A1,n−1

...
...

An−1,1 · · · An−1,n−1

⎤
⎥⎦
⎡
⎢⎣

x1

...
xn−1

⎤
⎥⎦ =

⎡
⎢⎣

b1

...
bn−1

⎤
⎥⎦− 5

⎡
⎢⎣

A1,n−1

...
An−1,n−1

⎤
⎥⎦ .

We have obtained a new square and symmetric coefficient matrix and a known
right-hand side. The new matrix is still diagonally dominant, but now has strictly-
dominant rows: if Ak,n �= 0, then row k in the new coefficient matrix is now strictly-
dominant, since we removed Ak,n from it. If we know the voltages at other nodes,
we repeat the process and drop more rows and columns, making the remaining
coefficient matrix even more dominant.

Given two resistive networks with the same number of unknown-voltage nodes,
what is the interpretation of a path embedding π? An embedding of GA in GB

shows, for each edge (i, j) in GA, a path between i and j in GB. That path can
carry current and its conductance, which is the inverse of the sum of resistances
along the path, serves as a lower bound on the conductance between i and j in GB.
Intuitively, an embedding allows us to show that GB is, up to a certain factor, “as
good as” GA, in the sense that for a given vector of voltages, currents in GB are
not that much smaller than the currents in GA.


